Detalhes bibliográficos
Ano de defesa: |
2003 |
Autor(a) principal: |
Carbone, Vera Lucia |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/55/55135/tde-25042003-183522/
|
Resumo: |
Neste trabalho estudamos problemas de reação difusão em domínios unidimensionais que surgem de materiais compostos e obtemos resultados comparando os fluxos do problema original e do problema limite quando a difusão fica muito grande em partes do domínio. Provamos que os autovalores e autofunções do operador linear ilimitado associado à equação limite têm a propriedade de Sturm Liouville e provamos que as soluções do problema de reação difusão têm a propriedade do decrescimento do número de zeros ao longo do tempo. Estes resultados são usados para provar que as variedades instável e estável de pontos de equilíbrios são genericamente transversais e que o fluxo no atrator para o problema de reação difusão é genericamente estruturalmente estável. Estes fatos permitem obter a equivalência topológica dos fluxos restritos aos atratores dos problemas original e seu problema limite. |