Problemas parabólicos em materiais compostos unidimensionais: propriedade de Morse Smale.

Detalhes bibliográficos
Ano de defesa: 2003
Autor(a) principal: Carbone, Vera Lucia
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-25042003-183522/
Resumo: Neste trabalho estudamos problemas de reação difusão em domínios unidimensionais que surgem de materiais compostos e obtemos resultados comparando os fluxos do problema original e do problema limite quando a difusão fica muito grande em partes do domínio. Provamos que os autovalores e autofunções do operador linear ilimitado associado à equação limite têm a propriedade de Sturm Liouville e provamos que as soluções do problema de reação difusão têm a propriedade do decrescimento do número de zeros ao longo do tempo. Estes resultados são usados para provar que as variedades instável e estável de pontos de equilíbrios são genericamente transversais e que o fluxo no atrator para o problema de reação difusão é genericamente estruturalmente estável. Estes fatos permitem obter a equivalência topológica dos fluxos restritos aos atratores dos problemas original e seu problema limite.