Detalhes bibliográficos
Ano de defesa: |
2010 |
Autor(a) principal: |
Silva, Jonathan de Andrade |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/55/55134/tde-07062010-144250/
|
Resumo: |
A substituição de valores ausentes, também conhecida como imputação, é uma importante tarefa para a preparação dos dados em aplicações de mineração de dados. Este trabalho propõe e avalia um algoritmo para substituição de valores ausentes baseado em um algoritmo evolutivo para agrupamento de dados. Este algoritmo baseia-se na suposição de que grupos (previamente desconhecidos) de dados podem prover informações úteis para o processo de imputação. Para avaliar experimentalmente o algoritmo proposto, simulações de valores ausentes foram realizadas em seis bases de dados, para problemas de classificação, com a aplicação de dois mecanismos amplamente usados em experimentos controlados: MCAR e MAR. Os algoritmos de imputação têm sido tradicionalmente avaliados por algumas medidas de capacidade de predição. Entretanto, essas tradicionais medidas de avaliação não estimam a influência dos métodos de imputação na etapa final em tarefas de modelagem (e.g., em classificação). Este trabalho descreve resultados experimentais obtidos sob a perspectiva de predição e inserção de tendências (viés) em problemas de classificação. Os resultados de diferentes cenários nos quais o algoritmo proposto, apresenta em geral, desempenho semelhante a outros seis algoritmos de imputação reportados na literatura. Finalmente, as análises estatísticas reportadas sugerem que melhores resultados de predição não implicam necessariamente em menor viés na classificação |