Detecção de outliers baseada em caminhada determinística do turista

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: Rodrigues, Rafael Delalibera
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/59/59143/tde-14062018-223903/
Resumo: Detecção de outliers é uma tarefa fundamental para descoberta de conhecimento em mineração de dados. Cujo objetivo é identificar as amostras de dados que desviam acentuadamente dos padrões apresentados num conjunto de dados. Neste trabalho, apresentamos uma nova técnica de detecção de outliers baseada em caminhada determinística do turista. Especificamente um caminhante é iniciado para cada exemplar de dado, variando-se o tamanho da memória, assim, um exemplar recebe uma alta pontuação de outlier ao participar em poucos atratores, enquanto que receberá uma baixa pontuação no caso de participar numa grande quantidade de atratores. Os resultados experimentais em cenários artificiais e reais evidenciaram um bom desempenho do método proposto. Em comparação com os métodos clássicos, o método proposto apresenta as seguintes características salientes: 1) Identifica os outliers através da determinação de estruturas no espaço de dados ao invés de considerar apenas características físicas, como distância, similaridade e densidade. 2) É capaz de detectar outliers internos, situados em regiões entre dois ou mais agrupamentos. 3) Com a variação do valor de memória, os caminhantes conseguem extrair tanto características locais, quanto globais do conjunto de dados. 4) O método proposto é determinístico, não exigindo diversas execuções (em contraste às técnicas estocásticas). Além disso, neste trabalho caracterizamos, pela primeira vez, que as dinâmicas exibidas pela caminhada do turista podem gerar atratores complexos, com diversos cruzamentos. Sendo que estes podem revelar estruturas ainda mais detalhadas e consequentemente melhorar a detecção dos outliers.