Avaliação e seleção de modelos em detecção não supervisionada de outliers

Detalhes bibliográficos
Ano de defesa: 2015
Autor(a) principal: Marques, Henrique Oliveira
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/55/55134/tde-26062015-101457/
Resumo: A área de detecção de outliers (ou detecção de anomalias) possui um papel fundamental na descoberta de padrões em dados que podem ser considerados excepcionais sob alguma perspectiva. Uma importante distinção se dá entre as técnicas supervisionadas e não supervisionadas. O presente trabalho enfoca as técnicas de detecção não supervisionadas. Existem dezenas de algoritmos desta categoria na literatura, porém cada um deles utiliza uma intuição própria do que deve ser considerado um outlier ou não, que é naturalmente um conceito subjetivo. Isso dificulta sensivelmente a escolha de um algoritmo em particular e também a escolha de uma configuração adequada para o algoritmo escolhido em uma dada aplicação prática. Isso também torna altamente complexo avaliar a qualidade da solução obtida por um algoritmo/configuração em particular adotados pelo analista, especialmente em função da problemática de se definir uma medida de qualidade que não seja vinculada ao próprio critério utilizado pelo algoritmo. Tais questões estão inter-relacionadas e se referem respectivamente aos problemas de seleção de modelos e avaliação (ou validação) de resultados em aprendizado de máquina não supervisionado. Neste trabalho foi desenvolvido um índice pioneiro para avaliação não supervisionada de detecção de outliers. O índice, chamado IREOS (Internal, Relative Evaluation of Outlier Solutions), avalia e compara diferentes soluções (top-n, i.e., rotulações binárias) candidatas baseando-se apenas nas informações dos dados e nas próprias soluções a serem avaliadas. O índice também é ajustado estatisticamente para aleatoriedade e extensivamente avaliado em vários experimentos envolvendo diferentes coleções de bases de dados sintéticas e reais.