Detalhes bibliográficos
Ano de defesa: |
2021 |
Autor(a) principal: |
Bileki, Guilherme Augusto |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://www.teses.usp.br/teses/disponiveis/55/55134/tde-20052021-111418/
|
Resumo: |
Neste trabalho é apresentada a aplicação de um modelo híbrido para prever os movimentos do preço-médio de instrumentos da Bolsa de Valores do Brasil (B3) utilizando dados do livro de ofertas e as mensagens relacionadas. Uma Rede Neural Convolucional (CNN) é utilizada para extrair características espaciais do livro de ofertas e um algoritmo baseado em árvores de decisão é utilizado para combinar as características da CNN com os dados do arquivo de mensagens. Diferente da maioria das outras bolsas de valores pelo mundo, o arquivo de mensagens da B3 inclui a qual corretora uma ordem pertence e neste trabalho também é apresentada uma análise de sua importância.Os resultados demonstram que a solução pode ser melhorada em 8% em termos de precisão (5% devido ao classificador baseado em árvore de decisão e mais 3% combinando com as mensagens) em comparação com uma CNN tradicional, onde as etapas de extração e classificação são ambas resolvidas pelo próprio modelo. Além disso, a utilização deste classificador permite a transferência de aprendizado de forma muito mais rápida do que o treinamento de uma CNN tradicional (cerca de 40 segundos). |