Detalhes bibliográficos
Ano de defesa: |
1992 |
Autor(a) principal: |
Nicola, Selma Helena de Jesus |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/55/55135/tde-21092018-094849/
|
Resumo: |
Estamos interessados no sistema ui(t)= -ui(t) + Σnj=1Jijf(uj(t - τ)), i = 1, 2, ..., n, onde ui é real, (J,sub>ij) é uma n X n matriz real, f(0) = 0 e o valor β = f\'(0) é o assim chamado ganho. Este é o modelo matemático de C. M. Marcus e R. M. Westervelt para uma rede neural analógica com retardamento. estudamos soluções periódicas do sistema e bifurcação de tais soluções quando o retardamento τ desempenha o papel de um parâmetro. |