Experimental studies of the muonic component of extensive air showers

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: Prado, Raul Ribeiro
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/76/76131/tde-21062018-150629/
Resumo: Ultra-High Energy Cosmic Rays (UHECR) can only be measured by the detection of Extensive Air Showers (EAS) created by the interaction of the cosmic ray particle with an atmospheric nuclei. The inference of some of the properties of UHECR, like their mass composition, is only possible by the comparison of measurements of EAS observables to predictions from Monte Carlo simulations. The most important source of uncertainties on the description of EAS by the simulations is the modeling of hadronic interactions. For many years it has been known that the hadronic interaction models fail on predicting the EAS observables related to their muonic component. The most evident manifestation of that is called muon deficit problem due to the fact that the number of muons in EAS with energies above 1018 eV predicted by simulations is smaller than the observed ones. The aim of this thesis is to approach this problem in three distinct fronts. First, a method is developed to interpret measurements of number of muons in terms of cosmic rays composition in despite of the muon deficit problem. Second, an EAS observable which is sensitive to the muon energy spectrum at ground and, consequently, can be used to constrain hadronic interaction models is proposed and tested. Third and final, the muon production in air showers is studied through measurements of hadron production spectra in pion-carbon interactions.