Redes neurais auto-organizáveis na caracterização de lesões intersticiais de pulmão em radiografia de tórax

Detalhes bibliográficos
Ano de defesa: 2007
Autor(a) principal: Ambrosio, Paulo Eduardo
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/17/17138/tde-05092007-145334/
Resumo: O desenvolvimento tecnológico proporciona uma melhoria na qualidade de vida devido à facilidade, rapidez e flexibilidade no acesso à informação. Na área biomédica, a tecnologia é reconhecidamente uma importante aliada, permitindo o rápido desenvolvimento de métodos e técnicas que auxiliam o profissional na atenção à saúde. Recentes avanços na análise computadorizada de imagens médicas contribuem para o diagnóstico precoce de uma série de doenças. Nesse trabalho é apresentada uma metodologia para o desenvolvimento de um sistema computacional para caracterização de padrões em imagens pulmonares, baseado em técnicas de redes neurais artificiais. No estudo, buscou-se verificar a utilização de redes neurais auto-organizáveis como ferramenta de extração de atributos e redução de dimensionalidade de imagens radiográficas de tórax, objetivando a caracterização de lesões intersticiais de pulmão. Para a redução de dimensionalidade e extração de atributos, implementou-se um algoritmo baseado nos mapas auto-organizáveis (SOM), com algumas variações, obtendo-se uma redução dos cerca de 3 milhões de pixels que compõe uma imagem, para 240 elementos. Para a classificação dos padrões, utilizou-se uma rede Perceptron multi-camadas (MLP), validada com a metodologia leave-one-out. Com uma base contendo 79 exemplos de padrão linear, 37 exemplos de padrão nodular, 30 exemplos de padrão misto, e 72 exemplos de padrão normal, o classificador obteve a média de 89,5% de acerto, sendo 100% de classificação correta para o padrão linear, 67,5% para o padrão nodular, 63,3% para o padrão misto, e 100% para o padrão normal. Os resultados obtidos comprovam a validade da metodologia.