Desenvolvimento de ZrO2/Al2O3 e ZrO2/Al2O3-NbC usando sinterização convencional e não convencional

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: Salem, Raphael Euclides Prestes
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/74/74133/tde-26022018-094441/
Resumo: Os compósitos cerâmicos de alto desempenho têm sido objeto de frequentes estudos nas últimas décadas, visando à melhora das propriedades mecânicas e ao aumento da sua gama de aplicações em produtos tecnológicos. Este trabalho consistiu em estudar a preparação, a sinterização convencional e não convencional e as propriedades mecânicas e tribológicas resultantes de dois sistemas compósitos: t-ZrO2/Al2O3 e t-ZrO2/Al2O3-NbC. No sistema t-ZrO2/Al2O3 foram estudadas as composições de 0, 5 e 15% em volume de Al2O3 usando pós comerciais. No sistema t-ZrO2/Al2O3-NbC, foi usado um pó nanocristalino de Al2O3-NbC, obtido por moagem reativa de alta energia e adicionado na proporção de 5% em volume à matriz de t-ZrO2. Os pós foram prensados uniaxial e isostaticamente e sinterizados em forno convencional e pelas técnicas de flash sintering (FS) (t-ZrO2/Al2O3) e spark plasma sintering (SPS) (t-ZrO2/Al2O3-NbC). Os compósitos t-ZrO2/Al2O3 sinterizados convencionalmente e t-ZrO2/Al2O3-NbC sinterizados convencionalmente e por SPS foram caracterizados por medidas de densidade aparente, dilatometria, microscopia eletrônica de varredura (MEV), e medidas de propriedades mecânicas: dureza, módulo de Young e tenacidade à fratura. Os compósitos t-ZrO2/Al2O3 sinterizados por FS foram caracterizados por medidas de densidade aparente, dilatometria in situ e MEV. Os nanocompósitos de t-ZrO2/Al2O3-NbC foram também caracterizados quanto à resistência ao desgaste pelo método esfera-no-disco, utilizando esferas de Al2O3 e WC-6%Co como contramateriais. Os resultados mostraram que a moagem reativa de alta energia foi completa e efetiva na obtenção de pós nanométricos de Al2O3-NbC, com tamanhos de cristalito de 9,1 nm para Al2O3 e 9,7 nm para o NbC. A desaglomeração posterior à moagem de alta energia foi eficaz na redução do tamanho de aglomerados. Os compósitos t-ZrO2/Al2O3 e t-ZrO2/Al2O3-NbC sinterizados convencionalmente e ZrO2/Al2O3-NbC sinterizados por SPS mostraram alta densificação (>97% DT e boas propriedades mecânicas. Os nanocompósitos de t-ZrO2/Al2O3 sinterizados por FS apresentaram uma densificação ultrarrápida (< 1 min) com retração linear superior às amostras sinterizadas em forno convencional, ocorrente a temperaturas inferiores a 1000°C, com densidades relativas superiores a 90% DT em algumas composições. Os nanocompósitos de t-ZrO2/Al2O3-NbC apresentaram propriedades competitivas entre os compósitos sinterizados convencionalmente e por SPS, com dureza e tenacidade à fratura superiores às da t-ZrO2 monolítica. A resistência ao desgaste desses nanocompósitos sinterizados convencionalmente, no entanto, foi notadamente superior à dos sinterizados por SPS. A oxidação do NbC nos compósitos sinterizados convencionalmente influiu negativamente nas propriedades, levando à sugestão de uma \"janela\" de temperaturas em que a sinterização do nanocompósito de t-ZrO2/Al2O3-NbC seja interessante sem a degradação das propriedades mecânicas. Os resultados permitiram concluir que os materiais estudados apresentam potencial para aplicações industriais que requerem cerâmicas de alto desempenho mecânico e de resistência ao desgaste.