Hurdles and potentials in value-added use of peanut and grape by-products as sources of phenolic compounds

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: Camargo, Adriano Costa de
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/11/11141/tde-09112016-171820/
Resumo: Recent studies have demonstrated that peanut and grape processing by-products may be richer sources of bioactive compounds as compared to their original raw material and feedstock; however, before their application as a source of nutraceuticals or in the prevention of lipid oxidation in food systems, certain technological challenges have to be addressed. This study discusses recent advances in the application of plant food processing by-products as sources of phenolic compounds with special emphasis on the profiling and screening of phenolics using high-performance liquid chromatography-mass spectrometry, their potential health benefits, and microbiologial safety. The major findings are summarized in chapters 2, 3, and 4. The first chapter deals with phenolics from grape by-products. In general, insoluble-bound phenolics were more effective in inhibiting copper-induced human LDL-cholesterol oxidation in vitro than free and esterified phenolics. Phenolic extracts from all fractions inhibited peroxyl radical-induced DNA strand breakage. The third chapter brings about the effects of gamma-irradiation on the microbial growth, phenolic composition, and antioxidant properties of peanut skin. Gamma-irradiation at 5.0 kGy decreased the microbiological count of the product. Total phenolic and proanthocyanidin contents, ABTS radical cation, DPPH radical, hydrogen peroxide, and hydroxyl radical scavenging capacities as well as the reducing power of the sample were increased upon gamma-irradiation in both the free and insoluble-bound phenolic fractions. The bioactivity of the free phenolics against in vitro human LDL-cholesterol oxidation and copper induced DNA strand breakage was improved upon gamma-irradiation. Phenolic compounds were positively or tentatively identified and their distribution was in the decreasing order of free > esterified > insoluble-bound forms. Procyanidin dimer A was increased in all phenolic fractions, whereas procyanidin dimer B decreased. Gamma-irradiation induced changes may be explained by molecular conversion, depolymerization, and cross-linking. In the fourth chapter, the ability of selected enzymes in improving the extraction of insoluble-bound phenolics from the starting material (experiment I) or the residues containing insoluble-bound phenolics (experiment II) were evaluated. Pronase and Viscozyme improved the extraction of insoluble-bound phenolics. Viscozyme released higher amounts of gallic acid, catechin, and prodelphinidin dimer A compared to Pronase treatment. Furthermore, p-coumaric and caffeic acids, as well as procyanidin dimer B, were extracted with Viscozyme but not with Pronase treatment. Solubility plays an important role in the bioavailability of phenolic compounds, hence this study may assist in better exploitation of phenolics from winemaking by-products as functional food ingredients or supplements.