Detalhes bibliográficos
Ano de defesa: |
2018 |
Autor(a) principal: |
Nascimento, Antonio Marcos Batista do |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/45/45133/tde-05062018-155758/
|
Resumo: |
Neste trabalho consideramos um processo de Markov a tempo contínuo com espaço de estados finito em um meio aleatório, a saber, a dinâmica de Metropolis para o Modelo de Energia Aleatória Generalizado (GREM) com um número de níveis finito e discutimos o comportamento do seu tempo de chegada ao equilíbrio, o qual é dado pelo inverso da lacuna espectral de sua matriz de probabilidades de transição. No principal resultado desta tese provamos que o quociente entre o volume do sistema e o logaritmo do inverso da lacuna é quase sempre limitado, por cima, por uma função da temperatura, que também é a que descreve a energia livre do GREM sob o regime de temperaturas baixas. Como um estudo adicional, também é discutido um correspondente limitante inferior em um caso particular do GREM com 2 níveis. |