Cadeias estocásticas parcimoniosas com aplicações à classificação e filogenia das seqüências de proteínas.

Detalhes bibliográficos
Ano de defesa: 2007
Autor(a) principal: Leonardi, Florencia Graciela
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/95/95131/tde-07032007-121126/
Resumo: Nesta tese apresentamos alguns resultados teóricos e práticos da modelagem de seqüências simbólicas com cadeias estocásticas parcimoniosas. As cadeias estocásticas parcimoniosas, que incluem as cadeias estocásticas de memória variável, constituem uma generalização das cadeias de Markov de alcance fixo. As seqüências simbólicas às quais foram aplicadas as ferramentas desenvolvidas são as cadeias de aminoácidos. Primeiramente, introduzimos um novo algoritmo, chamado de SPST, para selecionar o modelo de cadeia estocástica parcimoniosa mais ajustado a uma amostra de seqüências. Em seguida, utilizamos esse algoritmo para estudar dois importantes problemas da genômica; a saber, a classificação de proteínas em famílias e o estudo da evolução das seqüências biológicas. Finalmente, estudamos a velocidade de convergência de algoritmos relacionados com a estimação de uma subclasse das cadeias estocásticas parcimoniosas, as cadeias estocásticas de memória variável. Assim, generalizamos um resultado prévio de velocidade exponencial de convergência para o algoritmo PST, no caso de cadeias de memória ilimitada. Além disso, obtemos um resultado de velocidade de convergência para uma versão generalizada do Critério da Informação Bayesiana (BIC), também conhecido como Critério de Schwarz.