Redes lógicas de Markov aplicadas ao aprendizado de classificadores automáticos de dados.

Detalhes bibliográficos
Ano de defesa: 2010
Autor(a) principal: Silva, Victor Anselmo
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/3/3152/tde-18052011-151242/
Resumo: Sistemas de computação têm se tornado maiores e mais complexos com o objetivo de lidar com a vasta quantidade de dados disponíveis. Uma tarefa decisiva em tais sistemas é classificar estes dados, bem como extrair informação útil destes. Nesta dissertação, testam-se as redes lógicas de Markov como linguagem para especificação e aprendizado de classificadores automáticos de dados. Esta linguagem combina fragmentos da lógica de primeira ordem e modelos probabilísticos gráficos (redes de Markov) em uma única representação. A junção destas duas técnicas permite a modelagem de conhecimento relacional através da lógica, e também de incertezas por meio de probabilidades e grafos não-direcionados. Neste trabalho, classificadores são aprendidos segundo dois paradigmas de aprendizado de máquina: o supervisionado, foco desta dissertação, e também o aprendizado semi-supervisionado com restrições determinísticas. Para investigar a utilidade das redes lógicas de Markov no treinamento de classificadores, uma série de experimentos de aprendizado é desenvolvida a partir de bases de dados de treino reais disponíveis em repositórios na internet. Como ferramenta auxiliar nos experimentos, esta dissertação testa também o pacote Alchemy, que provê um conjunto de algoritmos para tarefas gerais de aprendizado de máquina e inferência probabilística em redes lógicas de Markov. Para mensurar o desempenho dos classificadores aprendidos, três métricas tradicionais são empregadas: acurácia, precisão e revocação. Os resultados alcançados com classificadores semi-supervisionados com restrições indicam que a linguagem ainda não é própria para este paradigma de aprendizado. Por outro lado, o êxito obtido no desempenho dos classificadores treinados de forma supervisionada sugere que as redes lógicas de Markov são um formalismo lógico-probabilístico promissor para aplicações de classificação, e devem ser objeto de pesquisas futuras.