Involuções de grupo orientadas em álgebras de grupo

Detalhes bibliográficos
Ano de defesa: 2013
Autor(a) principal: Villa, Alexander Holguín
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://teses.usp.br/teses/disponiveis/45/45131/tde-20220712-130802/
Resumo: Seja FG a álgebra de grupo do grupo G sobre o corpo F com car(F) = p 6'diferente'2. Dados 'delta'uma orientação de G e * uma involução em G, considera-se uma involução orientada * em FG de maneira natural. O objetivo desta tese é estudar *-Identidades Polinomiais em FG e *-Identidades de Grupo em U+(FG). Estudamos primeiramente a normalidade em FG com respeito as involuções *e *. Caracterizamos em ambos casos quando FG é uma álgebra normal. Depois estudamos propriedades de Lie do conjunto dos elementos simétricos FG+ sob involuções orientadas. Mostramos por exemplo, que se 'sigma'(G) = {z-1 z*:'pertence' 'sigma'(G)} é um conjunto infinito, então FG* é Lie nilpotente de indice n se, e somente se FG é Lie nilpotente de indice n. Quando G não tem elementos de ordem 2 e FG é semiprima, mostramos que FG+ é Lie n-Engel (Lie nilpotente) se, e somente se, FG é normal. Finalmente, estudamos IG\2019s no conjunto U+(FG) e, caracterizamos (sob certas hipóteses) álgebras de grupo regulares FG com U+(F) satisfazendo uma IG.