Detalhes bibliográficos
Ano de defesa: |
1995 |
Autor(a) principal: |
Lima, Ivanildo Dias de |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://teses.usp.br/teses/disponiveis/45/45131/tde-20210729-010846/
|
Resumo: |
Seja c um subconjunto convexo fechado, ilimitado e livre de retas do 'R POT.N'. Denotamos por c=co'BARRA' (textc) e co'BARRA' (textc) as envoltorias convexas fechadas dos pontos extremais e terminais extremais de c, respectivamente. Queremos encontrar condicoes necessarias e suficientes para que c seja compacto. Primeiramente mostramos que c e compacto com interior entao co'BARRA' (textc) e diferente de vazio, compacto e tambem c 'CONTIDO'co'BARRA' (textc) + l, onde l e uma reta gerada por qualquer direcao extremal de c. Por outro lado, se co'BARRA' (textc) for compacto e c 'CONTIDO'co'BARRA' (textc) + l, descrito conforme acima, entao temos c compacto. Por fim, mostramos que se c e compacto com interior e co'BARRA' (textc) nao tem interior entao c= h-'INTERSECAO'c e co'BARRA' (textc)=h 'INTERSECAO'c, onde h=aff (textc) |