Detalhes bibliográficos
Ano de defesa: |
2003 |
Autor(a) principal: |
Silva, Carlos Augusto Uchôa da |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/18/18137/tde-18092015-155038/
|
Resumo: |
O NAVSTAR-GPS, com uma grande variedade de conjuntos receptores e sua aplicabilidade prática em diversas áreas, transformou-se no mais difundido dos sistemas de posicionamento. Porém, necessidades cada vez maiores em termos de precisão trouxeram consigo o ônus de um custo elevado com a aquisição de equipamentos de dupla freqüência. Este trabalho consiste no desenvolvimento de um método que possibilite a modelagem das observáveis GPS, através de Redes Neurais Artificiais, bem como a agregação destes dados a um arquivo gerado por um receptor de uma freqüência, conferindo-lhe características específicas de arquivos gerados por receptores de dupla freqüência e código P. Isto possibilita que dados gerados por receptores de uma freqüência, a imensa maioria dos receptores utilizados no Brasil, possam ser processados como vetores de bases longas. Os resultados obtidos indicam que o uso de modelos neurais, treinados por algoritmos de aprendizado supervisionado, são uma alternativa promissora para estimar dados GPS. |