Detalhes bibliográficos
Ano de defesa: |
2014 |
Autor(a) principal: |
Dias, Ariel da Silva |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/55/55134/tde-06072015-105936/
|
Resumo: |
A gestão eficaz de recursos computacionais em nuvem está diretamente ligada a gerir corretamente o desempenho das aplicações hospedadas na Máquina Virtual (Virtual Machine - VM), criando um ambiente capaz de controlá-la e redimensionar recursos de Memória, Disco, CPU e outros que se façam necessários, individualmente em resposta a carga de trabalho. Neste trabalho considera-se também a gestão eficaz a qual é possível realizar o retorno sobre o investimento realizado para a contratação do serviço de IaaS. Nesta pesquisa de mestrado, foi proposto o gerenciamento da infraestrutura computacional em nuvem, através de dois modelos que facilitam o provisionamento auto-adaptativo de recursos em um ambiente virtualizado: alocação de recursos utilizando modelo para previsão da carga de trabalho futura e a gestão auto-adaptativa de capacidade utilizando agentes computacionais para monitorarem constantemente as VMs. Além disso, é proposto o retorno do investimento, que trata a relação entre o valor que o cliente contratou do serviço de IaaS e o quanto efetivamente ele está utilizando. Desta forma, a cada período é contabilizado a taxa do valor gasto em unidades monetárias. Para contemplar esta proposta, foram desenvolvidos algoritmos que são o núcleo de todo gerenciamento. Também foram realizados experimentos e os resultados mostram a capacidade do autogerenciamento das máquinas virtuais, com reconfiguração dinâmica da infraestrutura através de previsões baseadas em histórico e também da reconfiguração e monitoramento com o uso de agentes computacionais. Após a análise e avaliação dos resultados obtidos nos experimentos, é possível afirmar que houve uma significativa melhora da reconfiguração dos recursos com agentes computacionais se comparado a reconfiguração com previsão de carga futura. |