FOLE: Um framework conceitual para avaliação de desempenho da elasticidade em ambientes de computação em nuvem

Detalhes bibliográficos
Ano de defesa: 2014
Autor(a) principal: Coutinho, Emanuel Ferreira
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.repositorio.ufc.br/handle/riufc/18673
Resumo: Currently, many customers and providers are using resources of Cloud Computing environments,such as processing and storage, for their applications and services. Through ease of use, based on the pay per use model, it is natural that the number of users and their workloads also grow. As a result, providers should expand their resources and maintain the agreed level of quality for customers, otherwise breaks the Service Level Agreement (SLA) and the resulting penalties. With the increase in computational resources usage, a key feature of Cloud Computing has become quite attractive: the elasticity. Elasticity can be defined as how a computational cloud adapts to variations in its workload through resources provisioning and deprovisioning. Due to limited availability of information regarding configuration of the experiments, in general is not trivial to implement elasticity concepts, much less apply them in cloud environments. Furthermore, the way of measuring cloud elasticity is not obvious, and there is not yet a standard for this task. Moreover, its evaluation could be performed in different ways due to many technologies and strategies for providing cloud elasticity. A common aspect of elasticity performance analysis is the use of environmental resources, such as CPU and memory, and even without a specific metric, to allow an indirectly assess of elasticity. In this context, this work proposes FOLE, a conceptual framework for conducting performance analysis of elasticity in Cloud Computing environments in a systematic, flexible and reproducible way. To support the framework, we proposed a set of specific metrics for elasticity and metrics for its indirect measurement. For the measurement of elasticity in Cloud Computing, we proposed metrics based on concepts of Physics, such as strain and stress, and Microeconomics, such as Price Elasticity of Demand. Additionally, we also proposed metrics based on resources allocation and deallocation operation times, and used resources, to support the measurement of elasticity. For verification and validation of the proposal, we performed two experiments, one in a private cloud and other in a hybrid cloud, using microbenchmarks and a classic scientific application, through a designed infrastructure based on concepts of Autonomic Computing. Through these experiments, FOLE had validated their activities, allowing the systematization of a elasticity performance analysis. The results show it is possible to assess the elasticity of a Cloud Computing environment using specific metrics based on other areas of knowledge, and also complemented by metrics related to time and resources operations satisfactorily.