Detalhes bibliográficos
Ano de defesa: |
2013 |
Autor(a) principal: |
Souza, Sheila |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/5/5160/tde-16012014-144713/
|
Resumo: |
O reconhecimento de padrões por computador é uma das mais importantes ferramentas da Inteligência Artificial presente em inúmeras áreas do conhecimento com aplicações em diversos setores, incluindo o reconhecimento de caracteres. O objetivo da dissertação se concentra na investigação de um processo computacional automatizado - Sistema Computacional Paraconsistente - capaz de reconhecer Caracteres Numéricos Manuscritos e Caracteres Magnéticos Codificados em 7 Barras utilizados em cheques bancários brasileiros, fornecendo uma fundamentação técnica para reconhecer documentos e imagens digitalizadas e, também, sinais biológicos. Embora haja vários estudos em reconhecimento de caracteres, optou-se pelo estudo desse tema devido à sua intrínseca importância e constante desenvolvimento, além de possibilitar adaptações para fazer o reconhecimento de diferentes tipos de sinais como, por exemplo, sinais biológicos. A metodologia adotada para essa tarefa se baseia nas Redes Neurais Artificiais Paraconsistentes por se tratar de uma ferramenta com capacidade de trabalhar com dados imprecisos, inconsistentes e paracompletos sem o perigo de trivialização. O processo de reconhecimento desse sistema é realizado a partir de algumas características do caractere previamente selecionadas com base em algumas técnicas do Grafismo e realiza-se a análise dessas características bem como o reconhecimento do caractere através das Redes Neurais Artificiais Paraconsistentes O sistema foi construído para reconhecer caracteres numéricos com um padrão previamente definido, onde adotou-se os Caracteres Magnéticos Codificados em 7 Barras utilizados em cheques bancários e, posteriormente, o sistema foi aperfeiçoado para fazer o reconhecimento de Caracteres Numéricos Manuscritos. Para a validação do estudo proposto apresentou-se dados reais, a saber, lotes de cheques e caracteres numéricos manuscritos digitalizados onde o sistema apresentou 97,85% de acertos para os Caracteres Magnéticos Codificados em 7 Barras e 91,62% de acertos para Caracteres Numéricos Manuscritos. O resultado obtido demonstra que o sistema é robusto o suficiente e pode servir de estudo para a análise de sinais em áreas correlatas com nível de precisão semelhante |