Raízes de funções de um complexo em uma variedade

Detalhes bibliográficos
Ano de defesa: 2002
Autor(a) principal: Aniz, Claudemir
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-10012018-110156/
Resumo: O objetivo deste trabalho é progredir na teoria de raízes para aplicações f : K → M entre complexos K e variedades fechadas M. ambas de mesma dimensão r ≥ 3. Duas direções são abordadas. Na primeira, o conceito de classes mínimas é definido, e buscamos condições sobre os espaços K e M para que exista uma aplicação na classe de homotopia de f, onde todas as classes são mínimas. Na segunda, supondo que Hr(K; Z) = 0, gostaríamos de saber se é possível existir f : K → M tal que MR[f, a ≠ 0, onde a ∈ M é um ponto arbitrário.