MERGULHOS EM CODIMENSAO 1 E GENUS DE VARIEDADES

Detalhes bibliográficos
Ano de defesa: 1995
Autor(a) principal: Silva, Silvia Regina Vieira da
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-09042018-144744/
Resumo: O objetivo deste trabalho é estudar a generalização natural de genus de uma variedade de qualquer dimensão e seu relacionamento com o genus de π1(M) . O genus de uma variedade compacta e conexa m-dimensional M é o número máximo de subvariedades de codimensão 1 , conexas , disjuntas com colarinho duplo que não desconecta M e o genus de um grupo G é o maior inteiro r tal que existe epimorfismo de G em F , onde Fr é o grupo livre com r geradores. O trabalho é baseado no artigo \" The genus and the fundamental group of hight dimensional manifolds \" , cujo autor é Octav Cornea . Mostra-se vários resultados , em particular temos que genus(M) ≤ genus(π1(M)), valendo a igualdade se o bordo de M for vazio. Também fazemos uma classificação de enlaçamentos de circunferências numa superfície orientável de genus g qualquer.