Detalhes bibliográficos
Ano de defesa: |
2018 |
Autor(a) principal: |
Mito, Leonardo Makoto |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/45/45132/tde-11052018-113001/
|
Resumo: |
Este trabalho é focado num problema clássico das Ciências e Engenharia, que consiste em cobrir um objeto por esferas de mesmo raio, a ser minimizado. A abordagem prática usual conta com sérias desvantagens. Logo, faz-se necessário trabalhar com isto de forma diferenciada. A técnica proposta aqui envolve a utilização de resultados célebres da geometria algébrica real, que tem como peça central o positivstellensatz de Stengle e, fazendo a devida relação entre esses resultados e otimização com restrições envolvendo representações naturais por somas de quadrados, é possível reduzir o problema original a um de programação semidefinida não linear. Mas, por contar com particularidades que favorecem a aplicação do paradigma de restauração inexata, esta foi a técnica utilizada para resolvê-lo. A versatilidade da técnica e a possibilidade de generalização direta dos objetos envolvidos destacam-se como grandes vantagens desta abordagem, além da visão algébrica inovadora do problema. |