Detalhes bibliográficos
Ano de defesa: |
2019 |
Autor(a) principal: |
Marchiori, Gianluca |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/3/3144/tde-07052019-082657/
|
Resumo: |
A análise isogeométrica (AIG) de estruturas consiste em construir a geometria exata ou aproximada de um modelo computacional a partir de funções criadas por meio de tecnologias de Computer Aided Design (CAD), tais como B-Splines, NURBS (Non-Uniform Rational BSplines) e T-splines, e aplicar o conceito de análise isoparamétrica, ou seja, representar o espaço de solução para as variáveis independentes em termos das mesmas funções que representam a geometria. O presente trabalho visa o estudo da análise isogeométrica aplicada a vigas planas, com a utilização de B-Splines e NURBS para aproximação de deslocamentos. São desenvolvidos modelos isogeométricos de vigas planas baseados nas hipóteses de Bernoulli- Euler e Timoshenko, e alguns exemplos de aplicação são realizados a fim de comparar os resultados numéricos com soluções analíticas, mostrando boa concordância. Uma questão pertinente à AIG corresponde à imposição de vínculos em pontos do domínio em que as funções básicas não sejam interpolatórias ou os vínculos desejados não forem diretamente relacionados aos graus de liberdade do elemento, que é o caso do elemento de viga de Bernoulli-Euler, já que as rotações geralmente não são tidas como graus de liberdade mas há a necessidade de se prescrever condições de contorno/conexão nas mesmas para descrever problemas físicos. Essa questão é tratada no presente trabalho através dos Métodos de Lagrange e de penalidade. São realizados exemplos de aplicação construídos com elementos de viga de Bernoulli-Euler utilizando os métodos de Lagrange e de penalidade na imposição de vínculos e na conexão entre pontos de regiões de domínio. |