Detalhes bibliográficos
Ano de defesa: |
2020 |
Autor(a) principal: |
Cavenaghi, Leonardo Francisco |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://www.teses.usp.br/teses/disponiveis/45/45131/tde-21122020-155111/
|
Resumo: |
Nesta tese estudamos diversas deformações métricas com o intuito de construir novos exemplos e encontrar condições necessárias e suficientes para existência de métricas com propriedades de curvatura (não-negativa e positiva), possivelmente construindo novos exemplos, sendo esses baseados em variedades exóticas. Estudamos também o comportamento limite de fluxos de curvatura média em variedades com folheações riemannianas singulares além do problema de prescrever curvatura escalar em grandes classes de fibrados. |