IMERSÔES JUSTAS DE VARIEDADES EM ESPAÇOS EUCLIDEANOS

Detalhes bibliográficos
Ano de defesa: 1993
Autor(a) principal: Nogueira, Antonio Carlos
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-24082018-105842/
Resumo: Uma aplicação f: M → Em, de um espaço topológico compacto e conexo em um espaço Euclideano é justa se para todo semi-espaço fechado h ⊂ Em, a inclusão f-1(h) → M induz um monomorfismo em Z2-homologia de Cech. Neste trabalho consideramos aplicações com esta propriedade, enfatizando o estudo de propriedades de imersões justas de variedades em espaços euclideanos. Para variedades de dimensão 2 justeza é equivalente a curvatura total absoluta sendo mínima. Nosso principal objetivo é discutir a existência de imersões justas para superfícies em E3. Segue do trabalho de N. Kuiper, e de um resultado recente de F. Haab, que todas as superfícies, exceto o plano projetivo (x = 1), a garrafa de Klein (x = O) e o plano projetivo com uma alça (x = -1), admitem imersão justa em E3. Estudamos também uma família genérica especial de aplicações justas C∞-estáveis do plano projetivo em E3.