Detalhes bibliográficos
Ano de defesa: |
1993 |
Autor(a) principal: |
Nogueira, Antonio Carlos |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/55/55135/tde-24082018-105842/
|
Resumo: |
Uma aplicação f: M → Em, de um espaço topológico compacto e conexo em um espaço Euclideano é justa se para todo semi-espaço fechado h ⊂ Em, a inclusão f-1(h) → M induz um monomorfismo em Z2-homologia de Cech. Neste trabalho consideramos aplicações com esta propriedade, enfatizando o estudo de propriedades de imersões justas de variedades em espaços euclideanos. Para variedades de dimensão 2 justeza é equivalente a curvatura total absoluta sendo mínima. Nosso principal objetivo é discutir a existência de imersões justas para superfícies em E3. Segue do trabalho de N. Kuiper, e de um resultado recente de F. Haab, que todas as superfícies, exceto o plano projetivo (x = 1), a garrafa de Klein (x = O) e o plano projetivo com uma alça (x = -1), admitem imersão justa em E3. Estudamos também uma família genérica especial de aplicações justas C∞-estáveis do plano projetivo em E3. |