Aprendizado de máquina em dados estruturados para modelagem de fenômenos hidráulicos em sistemas de microirrigação

Detalhes bibliográficos
Ano de defesa: 2021
Autor(a) principal: Bombardelli, Wagner Wilson Ávila
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/11/11152/tde-26032021-153455/
Resumo: O desempenho de um projeto de microirrigação está intimamente relacionado com a caracterização hidráulica de componentes do sistema. Buscando-se melhorar o desempenho de modelos matemáticos tradicionais, foram desenvolvidos e avaliados modelos computacionais baseados em redes neurais artificiais (MLP), máquina de vetores de suporte (SVR) e árvores de decisão conjuntas (XGB), a partir do aprendizado de bases de dados coletados em ensaios avaliando componentes de linhas laterais de irrigação: (a) conectores iniciais e de união, e; (b) emissores não-regulados. Os preditores considerados foram as propriedades do fluido, características geométricas e operacionais. Na base (a), um modelo genérico foi proposto para todos os conectores favorecendo o aprendizado mais completo possível. Os modelos tradicionais apresentaram erros superiores apontando que modelos computacionais podem proporcionar estimativas mais exatas em fenômenos relacionados à hidráulica de sistemas de microirrigação. O modelo MLP apresentou o melhor desempenho para os processos avaliados, embora necessite de um volume considerável de dados e uma calibração extensiva dos hiperparâmetros. O modelo SVR mostrou bom desempenho para base pequena, sendo predominantemente mais adequado o mapeamento por função de base radial. Contudo, é mais custoso computacionalmente e o estimador pode ser mais comprometido por ruídos. O modelo XGB cumpriu o custo computacional mais reduzido e forneceu uma boa acurácia, mas foi incoerente nos valores estimados em função de termos não correlacionados com os exemplos de treinamento. Os aplicativos WEB desenvolvidos sob código aberto facilitam o uso e a comparação de todos modelos de estudo e podem complementar ferramentas online para projetos e simulações.