Detalhes bibliográficos
Ano de defesa: |
2017 |
Autor(a) principal: |
Dias, William Ananias Vallerio |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/8/8133/tde-10072018-150343/
|
Resumo: |
O estadunidense Edward Fredkin, um pioneiro na área de computação, é conhecido por defender a hipótese do mundo natural ser fundamentalmente um sistema de computação digital se partirmos do princípio de que todas as grandezas físicas são discretas, de modo que cada unidade mínima de espaço e tempo possa assumir apenas uma quantidade finita de estados possíveis. Nesse cenário, as transições de estado do universo nas escalas mais elementares poderiam ser representadas por modelos de autômatos celulares, sistemas computacionais formados de unidades espaciais básicas (células) que modificam seus estados em dependência de uma regra de transição que toma o próprio estado da célula com relação às unidades vizinhas. Quando as mudanças de estados das células são consideradas em escalas maiores, é possível notar um comportamento coletivo que parece seguir uma regra própria, não contemplada na programação básica atuando no nível das células. Fredkin acredita que o nível mais microscópico de nosso universo funcione como um autômato celular e, quando sua computação é tomada em maiores escalas, o padrão coletivo é identificado com os elementos que definimos em nossa física atual como elétrons, moléculas, pedras, pessoas e galáxias, ainda que todos esses elementos macroscópicos sejam apenas o resultado de uma computação alterando estados presentes em unidades mínimas de espaço. Diante disso, a intenção deste trabalho é mostrar que a conjectura de Fredkin pode ser interpretada como uma hipótese reducionista, uma vez que todo sistema explicado por nossas teorias físicas podem ser completamente definidos em termos de uma estrutura computacional. |