Análise multivariada no mapeamento genético de traços quantitativos

Detalhes bibliográficos
Ano de defesa: 2007
Autor(a) principal: Esteban Duarte, Nubia
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/45/45133/tde-01032013-184306/
Resumo: Em pesquisa Genômica é de grande interesse o mapeamento de genes que controlam traços ou fenótipos quantitativos. Metodologias estatsticas para identicar genes que tenham efeitos sobre um unico traço são bem conhecidas na literatura e têm sido exaustivamente aplicadas no mapeamento genético de muitas doenças. Porem, na pratica, diferentes traços são correlacionados, como é o caso de hipertensão e obesidade, possivelmente, devido a aço de genes comuns envolvidos na sua regulação. Nestes casos, por meio de tecnicas estatísticas multivariadas, que exploram a estrutura de covariância entre os traços, é possvel identificar genes não detectados por analises univariadas, ganhar precisão nas estimativas dos efeitos e conhecer a posicão desses genes, alem de testar efeitos de pleiotropia (um mesmo gene controlando varios traços) e interacções gene-ambiente (os genes que controlam a pressão antes e depois de dieta com sal). Neste trabalho diferentes alternativas de analise estatstica são consideradas para explorar a informacão de vários tracos conjuntamente: modelo de regressão intervalar multivariado (Jiang & Zeng, 1995), mapeamento multivariado via a teoria espectral (Mangin et al.,1998), via medidas resumo relevantes (como a diferenca entre respostas antes e depois de uma exposição) e via ajustes por covariaveis. Também são introduzidas algumas abordagens graficas para o estudo do efeito de pleiotropia e interação geneambiente. As metodologias supracitadas são aplicadas a dados reais fornecidos pelo Laboratorio de Cardiologia e Genética Molecular do InCor/USP, que consideram várias medidas de pressão arterial em ratos provenientes de uma população F2.