Detalhes bibliográficos
Ano de defesa: |
2024 |
Autor(a) principal: |
Rodrigues, Gabriela Maria |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://www.teses.usp.br/teses/disponiveis/11/11134/tde-05042024-102614/
|
Resumo: |
Neste trabalho são definidos novos modelos de regressão, baseados na família de distribuições exponentiated odd log-logistic (EOLL-G). Esta família possui a flexibilidade de modelar dados bimodais, simétricos ou assimétricos. Utilizando a distribuição Normal como base, são propostos um modelo de regressão quantílica e um modelo de regressão parcialmente linear. Duas novas famílias bivariadas são definidas a partir da família EOLL-G e utilizando as cópulas de Clayton e de Frank. Dois modelos para dados censurados são propostos utilizando como base as distribuições Weibull e generalized Rayleigh. O desempenho preditivo do modelo parcialmente linear e de um dos modelos para dados censurados é comparado com algoritmos de aprendizado de máquinas: árvores de decisão, florestas aleatórias e florestas aleatórias de sobrevivência. Propriedades estruturais das novas distribuições foram fornecidas, que exibem a flexibilidade da família utilizada e podem ser úteis para trabalhos futuros. O método de máxima verossimilhança foi utilizado para estimação dos parâmetros e estudos de simulações para ambos os modelos são realizados, comprovando a consistência das estimativas. Diversas aplicações são realizadas ilustrando a utilidade dos novos modelos. Quanto à capacidade preditiva, eles mostraram-se competitivos aos algoritmos de aprendizado de máquina, de acordo com os estudos de simulações e com as aplicações realizadas. |