Definições parciais de verdade e sistemas de acumulação na aritmética formal

Detalhes bibliográficos
Ano de defesa: 2013
Autor(a) principal: Vicente, Luciano
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/8/8133/tde-18042013-120246/
Resumo: Segundo o teorema da indefinibilidade de Tarski-Gödel, não existe fórmula da linguagem da aritmética que defina o conjunto dos números de Gödel das sentenças verdadeiras da aritmética. No entanto, para cada número natural n, podemos definir o conjunto dos números de Gödel das sentenças verdadeiras da aritmética de grau menor que n. Essas definições produzem uma hierarquia V0(x), V1(x),..., Vn(x),... tal que, para todo x, se Vn(x), então Vn+1(x). Nesse estudo, ensairemos algumas aplicações desses predicados, chamados definições parciais de verdade, e outros predicados relacionados a eles na construção de sistemas formais para as verdades da aritmética. A ideia subjacente aos nossos sistemas é muito simples, devemos acumular de alguma maneira as definições parciais de verdade. Grosso modo, mostrar como fazê-lo é o objetivo desse estudo.