Sobre a geometria diferencial do cross-cap no 3-espaço Euclidiano

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: Sichacá, Martín Barajas
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-10042017-103122/
Resumo: Nesta tese estudamos a geometria diferencial do cross-cap usando ferramentas da teoria de singularidades. Estudamos curvas definidas sobre uma superfície regular que captam o contato da superfície com planos e esferas e estendemos o estudo para o cross-cap. Consideramos os fenômenos locais que ocorrem genericamente na família de projeções ortogonais do cross-cap e obtemos informações detalhadas sobre as bifurcações da projeção do conjuntos dos pontos duplos juntamente com a do contorno aparente. Estudamos as simetrias reflexõais infinitesimais do cross-cap através das singularidades da família da aplicações dobra e damos uma caracterização geométrica das mesmas. Finalmente, consideramos dualidade nas equações diferenciais binárias que definem as curvas assintóticas e as linhas de curvatura sobre o cross-cap. Estudamos o conjunto dos pontos onde ocorrem as inflexões de tais curvas e a relação deste conjunto com o conjunto sub-parabólico e flecnodal.