Subvariedades lagrangeanas mínimas e autossimilares no espaço paracomplexo

Detalhes bibliográficos
Ano de defesa: 2015
Autor(a) principal: Samuays, Maikel Antonio
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/45/45131/tde-05102015-104320/
Resumo: Neste trabalho estudamos as subvariedades lagrangeanas mínimas e autossimilares do espaço paracomplexo Dn. Começamos definindo o conceito de variedade para-Kähler e, como exemplo, descrevemos o espaço projetivo paracomplexo. Em seguida, estudamos as subvariedades paracomplexas e lagrangeanas. Após mostrarmos que toda subvariedade paracomplexa não-degenerada é mínima, dedicamos a atenção ao estudo das subvariedades lagrangeanas, restringindo-nos ao ambiente Dn. Em particular, estudamos as lagrangeanas que são invariantes sob a ação canônica do grupo SO(n), e as superfícies de Castro-Chen. Em ambos os casos, analisamos a minimalidade e a autossimilaridade das mesmas.