Representações parciais de grupos, seus domínios e o multiplicador de Schur parcial

Detalhes bibliográficos
Ano de defesa: 2014
Autor(a) principal: Lima, Helder Geovane Gomes de
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/45/45131/tde-18062014-145026/
Resumo: O multiplicador de Schur parcial de um grupo G é um semigrupo inverso comutativo pM(G) que, no estudo de representações parciais projetivas de grupos, desempenha um papel análogo ao do multiplicador de Schur clássico M(G). Há uma descrição de pM(G) como uma união de grupos abelianos, em que cada componente pM_D(G) é formada por classes de equivalência de certas funções parciais (chamadas de conjuntos fatores parciais), as quais assumem valores em um corpo e têm como domínio um subconjunto D de G × G. Os domínios D formam um reticulado e foram caracterizados como os subconjuntos T-invariantes de G × G, em que T é um monoide específico atuando em G × G. A componente total pM_{G × G}(G), que corresponde aos conjuntos fatores totalmente definidos, é particularmente interessante pois contém M(G) como um de seus subgrupos e, além disso, qualquer outra componente é uma imagem epimorfa da componente total. Um dos objetivos deste trabalho é determinar a componente total do multiplicador de Schur parcial para algumas classes importantes de grupos, como os grupos diedrais, os grupos dicíclicos e os produtos de grupos cíclicos. Outro tópico que será abordado é a estrutura do reticulado dos domínios dos conjuntos fatores parciais, destacando-se propriedades daqueles que correspondem às representações parciais ditas elementares, as quais possuem um papel relevante na teoria. Provaremos que todo domínio pode ser representado em uma forma única como uma reunião de certos domínios indecomponíveis, que consistem de peças estruturais chamadas de blocos e domínios minimais. Também será determinada a estrutura dos domínios elementares e serão obtidos alguns invariantes numéricos do conjunto parcialmente ordenado dos domínios elementares. Como uma consequência dos resultados obtidos, serão caracterizados os grupos para os quais todos os domínios elementares são indecomponíveis. Além disso será feita uma aplicação da teoria de álgebras de semigrupos à álgebra parcial de grupo, que é uma álgebra responsável pelas representações parciais de grupos.