Clustered Echo State networks for signal denoising and frequency filtering

Detalhes bibliográficos
Ano de defesa: 2020
Autor(a) principal: Oliveira Junior, Laercio de
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/59/59143/tde-28022021-205755/
Resumo: This dissertation aims to study a type of Artificial Neural Networks (ANNs), known as Reservoir Computing, specifically, the Echo State Networks (ESNs). ESNs are Recurrent Neural Networks (RNNs), which make input-output mapping through a high dimensional nonlinear projection, called reservoir. In a classic ESN, the internal connection matrix of the reservoir usually is formed by an Erdös-Rényi random graph. Recent studies have also investigated Clustered ESNs (CESNs), which replaces the random network inside the reservoir by a clustered network. Both types of ESNs have been applied to time series prediction problems. In this work, an ESN with a clustered Barabási-Albert network (Barabási-Albert CESN), and a deep ESN with clustered reservoir layers (Deep CESNs) are designed. Moreover, we propose to apply ESNs in two new different tasks: the frequency filtering problem and the noise filtering problem of time series. We also compare the performance of the classical ESN and its various extensions in these two tasks. Numerical results show that the proposed ESNs (Barabási-Albert CESN and Deep CESNs) outperform the classical ESN, indicating that the organization of reservoirs in clustered or layered networks can improve the learning performance of ESNs.