Detalhes bibliográficos
Ano de defesa: |
2019 |
Autor(a) principal: |
Sousa, Glória Cristina Vieira de |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/11/11134/tde-23052019-182643/
|
Resumo: |
Os dados de sobrevivência possuem peculiaridades que necessitam de uma atenção especial no momento em que se deseja realizar uma análise nos mesmos. Em tais dados é comum a presença de censuras e sua variável resposta é definida como o tempo de vida até a ocorrência de um evento de interesse. Existem distribuições que acolhem dados de sobrevivência, como as distribuições exponencial, Weibull, gama, gama generalizada, entre outras, assim como seus respectivos modelos de regressão adaptados para esse tipo de estudo. Os modelos de regressão exponencial e Weibull são os mais citados na literatura por terem fácil aplicação e se modelarem bem aos dados. O modelo de regressão gama generalizado geralmente se adapta melhor aos dados por ter três parâmetros, assim como o modelo de regressão log-logístico, que é visto como uma alternativa à distribuição Weibull e é muito utilizado por ter formas explícitas para a sua função de sobrevivência e de falha. No entanto, esses modelos ainda possuem restrições e, por conta disso, novas famílias de modelos de regressão estão sendo desenvolvidas na literatura, assim como a família de distribuições odd log-logística generalizada, que pretende oferecer melhores ajustes pois aparenta ter capacidade de modelar diferentes tipos de dados. O objetivo dessa dissertação foi aplicar técnicas de análise de sobrevivência na modelagem dos tempos de vida de Micrurus corallinus, ajustando os modelos já presentes na literatura e o modelo proposto odd log-logística generalizada Weibull (OLLG-W). Conclui-se que o modelo de regressão que se mostrou adequado aos dados foi o log-logístico e o modelo de regressão OLLG-W não apresentou nenhuma vantagem em relação aos que já são frequentes na literatura. |