Detalhes bibliográficos
Ano de defesa: |
2018 |
Autor(a) principal: |
Verssani, Bruna Aparecida Wruck |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/11/11134/tde-22012019-173525/
|
Resumo: |
A análise de confiabilidade desempenha um papel fundamental para estudos de durabilidade e otimização de tempos de reparo em sistemas reparáveis. Equipamentos como colhedoras de cana-de-açúcar que após a falha e um reparo voltam a exercer sua função objetivo são classificados como sistemas reparáveis. O objetivo deste trabalho consistiu em propor alternativas de modelagem para sistemas complexos, que apresentam grande variabilidade no comportamento da função intensidade de falha. Foi proposta a nova distribuição odd log-logística Weibull flexível generalizada (GOLLFW) e um modelo de regressão Weibull aplicado ao processo lei de potência usado para analisar sistemas reparáveis. Para a nova distribuição foi apresentada a família de distribuições odd log-logística generalizada, realizado um estudo de simulação para verificar algumas propriedades dos estimadores de máxima verossimilhança e incluídas covariáveis na análise dos tempos de falha através do modelo de regressão GOLLFW. Para a análise de regressão considerando os sistemas reparáveis, foram apresentados os principais modelos de contagem para um único sistema reparável e realizado a análise deles de forma separada e, em seguida, foram considerados mais de dois sistemas e acrescentado um modelo de regressão Weibull ao processo lei de potência (PLP). A característica de bimodalidade da distribuição GOLLFW garantiu a adequabilidade e um melhor ajuste aos dados. Já a inclusão de covariáveis através do modelo de regressão Weibull no PLP permitiu modelar sistemas que antes somente os processos de contagens tradicionais, processo lei de potência e processo de renovação, não se adequariam bem. |