Proposta de um modelo híbrido de tomada de decisão em grupo baseado na teoria dual hesitant fuzzy e algoritmo genético

Detalhes bibliográficos
Ano de defesa: 2022
Autor(a) principal: Calache, Lucas Daniel Del Rosso
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/18/18156/tde-10102022-154653/
Resumo: Os processos de tomada de decisão envolvem diversos tomadores de decisão que avaliam várias alternativas em relação à diversos critérios, o que pode trazer alta complexidade ao problema. Vários estudos apresentam técnicas multicritérios baseadas em representações fuzzy para consenso ou agregação dos julgamentos individuais. Uma limitação desses estudos é a não combinação das abordagens de consenso e de agregação de julgamentos individuais. A combinação destes dois tipos de abordagens pode contribuir para um processo de avaliação consensual, ainda que haja divergências em decorrência das diferentes percepções de gestores de diferentes setores. Assim, o objetivo geral deste projeto de doutorado é propor um modelo de tomada de decisão em grupo que busque combinar as abordagens de consenso e de agregação dos julgamentos utilizando a representação dual hesitant fuzzy sets (DHFS). Essa representação foi selecionada para superar as limitações das representações intuitionistic fuzzy e hesitant fuzzy. O desenvolvimento do projeto de doutorado inclui as seguintes fases: revisão da literatura; seleção das técnicas e construção do modelo; implementação computacional das técnicas; e aplicação piloto com avaliação da proposta. Para alcançar o objetivo exposto, um modelo de tomada de decisão composto por três fases foi proposto. A primeira fase consiste na estruturação do problema por meio da aplicação de um método de estruturação de problemas (PSM). A segunda fase consiste na proposição de um Algoritmo Genético (AG) para buscar o consenso entre os tomadores de decisão na ponderação dos critérios e dos tomadores de decisão. A terceira fase consiste na utilização de operadores de agregação DHFS e a técnica multicritério PROMETHEE V para selecionar o portifólio de alternativas. Uma aplicação piloto foi desenvolvida em uma indústria de siderurgia e mineração para exemplificar a utilização do modelo proposto no contexto de avaliação e seleção de um portifólio de ações sustentáveis. Testes computacionais foram executados para avaliar a robustez e o desempenho do AG proposto, variando-se o número de critérios, o número de tomadores de decisão, a quantidade de termos hesitantes e o nível de consenso requerido. Um gerador de instâncias foi proposto para criar os cenários de testes. Um algoritmo de otimização por enxame de partículas (PSO) foi implementado para possibilitar a comparação com o AG proposto. Como resultado, este estudo apresentou a proposta de um modelo de tomada de decisão que atende as necessidades atuais dos processos decisórios que envolvem tanto a busca do consenso quanto a agregação das opiniões divergentes dos tomadores de decisão. Os testes computacionais e comparação comprovaram a robustez e eficácia do AG proposto para consenso. A aplicação piloto demonstrou a aplicabilidade do modelo proposto. Como solução, o portifólio de ações sustentáveis definido buscou abranger as diferentes estratégias para a melhoria da sustentabilidade de uma cadeia de suprimentos.