Detalhes bibliográficos
Ano de defesa: |
1996 |
Autor(a) principal: |
Oliveira, Silvana Aparecida Ceregato de |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/55/55134/tde-15012018-084442/
|
Resumo: |
Neste trabalho propomos algumas soluções para problemas de seleção e controle introduzidos por Marsh e Zellner (1994). Estudamos soluções ótimas obtidas através de diferentes funções de perda e comparamos tais soluções com a chamada \"solução do diretor\". Além disso, enfocamos os problemas de controle de uma forma distinta da proposta em Marsh e Zellner, utilizando o conceito de densidade preditiva. Introduzimos o modelo de regressão logística em problemas de seleção e controle com heterogeneidade, obtendo soluções via Inferência Clássica e Inferência Bayesiana Assintótica. Analisamos um conjunto de dados simulados a fim de exemplificar o emprego do modelo de regressão logística em tais problemas. Baseando-nos em Geisser (1982), utilizamos funções de perda e densidade preditiva para obter soluções ótimas para problemas de seleção e controle. Procedemos a uma análise para verificar qual o impacto da função de perda na escolha dos parâmetros da distribuição a priori de O: probabilidade dos indivíduos aceitarem uma oferta para um curso a ser realizado. Na tentativa de solucionar problemas de captura-recaptura através de problemas de controle investigamos um estimador bastante conhecido, o estimador de Petersen (1896) e, através da Inferência Bayesiana, propomos um ajuste para o mesmo, similar às correções de Bartlett (1937). Através de um exemplo com dados simulados é possível verificar que o ajuste melhora sensivelmente as estimativas do tamanho de uma população animal. |