Mining user behavior in location-based social networks

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: Rebaza, Jorge Carlos Valverde
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/55/55134/tde-16112017-085356/
Resumo: Online social networks (OSNs) are Web platforms providing different services to facilitate social interaction among their users. A particular kind of OSNs is the location-based social network (LBSN), which adds services based on location. One of the most important challenges in LBSNs is the link prediction problem. Link prediction problem aims to estimate the likelihood of the existence of future friendships among user pairs. Most of the existing studies in link prediction focus on the use of a single information source to perform predictions, i.e. only social information (e.g. social neighborhood) or only location information (e.g. common visited places). However, some researches have shown that the combination of different information sources can lead to more accurate predictions. In this sense, in this thesis we propose different link prediction methods based on the use of different information sources naturally existing in these networks. Thus, we propose seven new link prediction methods using the information related to user membership in social overlapping groups: common neighbors within and outside of common groups (WOCG), common neighbors of groups (CNG), common neighbors with total and partial overlapping of groups (TPOG), group naïve Bayes (GNB), group naïve Bayes of common neighbors (GNB-CN), group naïve Bayes of Adamic-Adar (GNB-AA) and group naïve Bayes of Resource Allocation (GNB-RA). Due to that social groups exist naturally in networks, our proposals can be used in any type of OSN.We also propose new eight link prediction methods combining location and social information: Check-in Observation (ChO), Check-in Allocation (ChA), Within and Outside of Common Places (WOCP), Common Neighbors of Places (CNP), Total and Partial Overlapping of Places (TPOP), Friend Allocation Within Common Places (FAW), Common Neighbors of Nearby Places (CNNP) and Nearby Distance Allocation (NDA). These eight methods are exclusively for work in LBSNs. Obtained results indicate that our proposals are as competitive as state-of-the-art methods, or better than they in certain scenarios. Moreover, since our proposals tend to be computationally more efficient, they are more suitable for real-world applications.