Comparações de populações discretas

Detalhes bibliográficos
Ano de defesa: 2013
Autor(a) principal: Watanabe, Alexandre Hiroshi
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/55/55134/tde-11062013-095657/
Resumo: Um dos principais problemas em testes de hipóteses para a homogeneidade de curvas de sobrevivência ocorre quando as taxas de falha (ou funções de intensidade) não são proporcionais. Apesar do teste de Log-rank ser o teste não paramétrico mais utilizado para se comparar duas ou mais populações sujeitas a dados censurados, este teste apresentada duas restrições. Primeiro, toda a teoria assintótica envolvida com o teste de Log-rank, tem como hipótese o fato das populações envolvidas terem distribuições contínuas ou no máximo mistas. Segundo, o teste de Log-rank não apresenta bom comportamento quando as funções intensidade cruzam. O ponto inicial para análise consiste em assumir que os dados são contínuos e neste caso processos Gaussianos apropriados podem ser utilizados para testar a hipótese de homogeneidade. Aqui, citamos o teste de Renyi e Cramér-von Mises para dados contínuos (CCVM), ver Klein e Moeschberger (1997) [15]. Apesar destes testes não paramétricos apresentar bons resultados para dados contínuos, esses podem ter problemas para dados discretos ou arredondados. Neste trabalho, fazemos um estudo simulação da estatística de Cramér von-Mises (CVM) proposto por Leão e Ohashi [16], que nos permite detectar taxas de falha não proporcionais (cruzamento das taxas de falha) sujeitas a censuras arbitrárias para dados discretos ou arredondados. Propomos também, uma modificação no teste de Log-rank clássico para dados dispostos em uma tabela de contingência. Ao aplicarmos as estatísticas propostas neste trabalho para dados discretos ou arredondados, o teste desenvolvido apresenta uma função poder melhor do que os testes usuais