Detalhes bibliográficos
Ano de defesa: |
2005 |
Autor(a) principal: |
Souza, Bruno Feres de |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/55/55134/tde-18112014-144007/
|
Resumo: |
Recentemente, diversas tecnologias de análise de expressão gênica têm sido introduzidas. Os miroarrays estão entre as mais utilizadas. Dentre suas aplicações mais comuns, pode-se destacar a classificação de amostras de tecido, essencial para a identificação correta do tipo de câncer. Esta classificação é realizada com a ajuda de algoritmos de AMáquina (AM), como as Máquinas de Vetores de Suporte, ou simplesmente SVMs. Uma particularidade dos dados de expressão gênica é que a quantidade de amostras utilizadas pelo algoritmo de aprendizado é, normalmente, muitas vezes inferior à quantidade de características consideradas, o que pode deteriorar o desempenho dos algoritmos de AM e dificultar a compreensão dos dados. Neste contexto, o presente trabalho visa à comparação de diversas técnicas de seleção de características (SC) em SVMs aplicadas a dados microarrays. Além disso, durante a pesquisa, foram desenvolvidas 2 novas técnicas de SC baseadas em algoritmos genéticos. Os experimentos demonstram que a maioria das técnicas testadas é capaz de reduzir sobremaneira a dimensionalidade dos dados de expressão gênica sem prejudicar o desempenho das SVMs. |