Seleção de características em SVMs aplicadas a dados de expressão gênica

Detalhes bibliográficos
Ano de defesa: 2005
Autor(a) principal: Souza, Bruno Feres de
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/55/55134/tde-18112014-144007/
Resumo: Recentemente, diversas tecnologias de análise de expressão gênica têm sido introduzidas. Os miroarrays estão entre as mais utilizadas. Dentre suas aplicações mais comuns, pode-se destacar a classificação de amostras de tecido, essencial para a identificação correta do tipo de câncer. Esta classificação é realizada com a ajuda de algoritmos de AMáquina (AM), como as Máquinas de Vetores de Suporte, ou simplesmente SVMs. Uma particularidade dos dados de expressão gênica é que a quantidade de amostras utilizadas pelo algoritmo de aprendizado é, normalmente, muitas vezes inferior à quantidade de características consideradas, o que pode deteriorar o desempenho dos algoritmos de AM e dificultar a compreensão dos dados. Neste contexto, o presente trabalho visa à comparação de diversas técnicas de seleção de características (SC) em SVMs aplicadas a dados microarrays. Além disso, durante a pesquisa, foram desenvolvidas 2 novas técnicas de SC baseadas em algoritmos genéticos. Os experimentos demonstram que a maioria das técnicas testadas é capaz de reduzir sobremaneira a dimensionalidade dos dados de expressão gênica sem prejudicar o desempenho das SVMs.