Aplicação de medidas de causalidade na geração de cenários de Monte Carlo como alternativa para precificação de contratos de opções

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: Rodrigues, Daniel Brignani
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/55/55137/tde-07022018-085632/
Resumo: Este trabalho tem como objetivo utilizar medidas de causalidade entre séries temporais de grandezas financeiras para determinar a dependência entre os ativos do mercado e utilizar as medidas obtidas para fazer inferências sobre a dinâmica desses ativos. Essa metodologia define um previsor para os valores das séries que, juntamente com a determinação das distribuições de probabilidades empíricas dos erros desse previsor por meio do método de Kernel, permite a amostragem aleatória de cenários multivariados, com diversas aplicações. Os ativos considerados para os testes de causalidade são o índice Ibovespa, o valor da paridade da moeda dólar-real USDBRL (utilizando suas séries de preços e retornos de preços), além da taxa de juros negociada diariamente (CDI). O uso do Método de Monte Carlo (MMC) é abordado para a precificação de opções de compra europeias (calls) de USDBRL e Ibovespa, e a comparação dos resultados gerados por essa metodologia com valores calculados pela fórmula de Black-Scholes (método mais utilizado no mercado financeiro, atualmente), evidenciando suas vantagens e desvantagens. Conclui-se, com este estudo, que, por meio da metodologia proposta, é possível replicar alguns comportamentos intrínsecos do mercado (como a observação de tendências nas séries de preços devido a dependências implícitas, e a presença de caudas pesadas nas distribuições dos retornos) que são desprezados pela maioria dos modelos paramétricos utilizados hoje, bem como o efeito do uso dessas informações no preço de derivativos.