On Weierstrass points and some properties of curves of Hurwitz type

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: Cunha, Grégory Duran
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-18102018-084025/
Resumo: This work presents several results on curves of Hurwitz type, defined over a finite field. In 1961, Tallini investigated plane irreducible curves of minimum degree containing all points of the projective plane PG(2,q) over a finite field of order q. We prove that such curves are Fq3(q2+q+1)-projectively equivalent to the Hurwitz curve of degree q+2, and compute some of itsWeierstrass points. In addition, we prove that when q is prime the curve is ordinary, that is, the p-rank equals the genus of the curve. We also compute the automorphism group of such curve and show that some of the quotient curves, arising from some special cyclic automorphism groups, are still curves of Hurwitz type. Furthermore, we solve the problem of explicitly describing the set of all Weierstrass pure gaps supported by two or three special points on Hurwitz curves. Finally, we use the latter characterization to construct Goppa codes with good parameters, some of which are current records in the Mint table.