Inferência bayesiana em modelos de dinâmica de populações biológicas com termo de perturbação assimétrico

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: Silva, Carlos Patricio Montenegro
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/45/45133/tde-15052016-104959/
Resumo: Neste trabalho de tese, estudamos o modelo de crescimento logístico de populações biológicas utilizando a abordagem de espaço de estados. Os estados não observados são as biomassas anuais, a equação de observação é linear e a equação de estado é não linear. As distribuições de probabilidade utilizadas para os termos de erro de observação aditivos são: Normal, t-student, Skew-normal e Skew-t. As distribuições Log-normal, Log-t, Log-skew-normal e Log-skew-t são consideradas para os erros de observação multiplicativos. A inferência nos modelos é realizada considerando-se métodos Bayesianos e as distribuições a posterior de interesse são aproximadas utilizando-se algoritmos MCMC e a aproximação de Laplace. Apresentamos duas aplicações, a primeira referente a pesca de camarão marinho na costa do Chile, na qual a variável observável é o rendimento médio anual de pesca (captura por unidade de esforço média). Na segunda é considerada a pesca de lagostim vermelho na costa de Chile, na qual além do rendimento médio anual da pesca, observa-se as estimativas anuais de biomassa vulnerável, obtidas através de estudos de área varrida. Para o primeiro conjunto de dados, os modelos com erros de observação multiplicativos têm melhor performance, particularmente os modelos Log-skew-normal e Log-skew-t. Considerando estes resultados, no segundo caso utilizamos somente erros multiplicativos e a distribuição a posteriori preditiva mostra que cada variável observável parece ter sua própria família de distribuição de probabilidades. Além disso, os resultados também revelam uma crescente complexidade do modelo ao incorporar a classe mais geral de distribuições assimétricas.