Parameter estimation for a three-phase distributed synchronous generator model using noisy measurements

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: Geraldi Junior, Edson Luis
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/18/18154/tde-19102018-143704/
Resumo: The simplified models of synchronous generators, widely used in stability studies of large electric power systems, are not completely suitable for the stability analysis and the design of controllers of distributed synchronous generators, generally connected to typically unbalanced branches. To more accurately analyze the systems with distributed generation, it is necessary to utilize synchronous generator models that consider frequency variation in their electrical equations. Furthermore, this model must represent possible unbalanced three-phase voltages at the generator terminals as well. Nonetheless, to provide reliable responses, the parameters of this more detailed model should be known. Thus, this work assesses the influence of the parameters on the responses of a detailed synchronous generator model, suitable to depict unbalanced operating conditions, and proposes an approach for the estimation of its most important parameters. In the proposed structure, we first employ Trajectory Sensitivity Functions to evaluate the dependency of the responses of this model with respect to its parameters and, from that, we rank them according to their importance. Subsequently, we apply an estimation process that utilizes the Unscented Kalman Filter with the aid of a genetic algorithm to estimate the main parameters of this synchronous generator model under unbalanced operating conditions. To obtain the results and, therefore, assess the proposed estimation approach, we make use of a system which comprises a synchronous generator connected to a three-phase unbalanced load. In addition to the unbalanced operation of the test system, we also consider noises due to the constant load switching, typical of distribution systems. The estimations performed for three operating conditions of the generator were very satisfactory, which demonstrates the efficiency of the proposed approach to obtain adequate models for the description of synchronous generator operation under unbalanced operating conditions.