Detalhes bibliográficos
Ano de defesa: |
2020 |
Autor(a) principal: |
Nakamura, Aline Minali |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://www.teses.usp.br/teses/disponiveis/76/76132/tde-28092020-150703/
|
Resumo: |
Carboxilesterases compreendem uma grande classe com enovelamento α/β-hidrolase e catalisam a clivagem e a formação de ligações éster. São amplamente difundidas na natureza, sendo expressas por animais, plantas e microrganismos, desempenhando um papel essencial no metabolismo de ésteres carboxílicos endógenos e exógenos. Além das importantes funções fisiológicas, elas compõem alguns dos biocatalisadores mais importantes para setores da biotecnologia, sendo amplamente aplicados em diferentes processos industriais e com muitas preparações comerciais disponíveis. Além disso, B. licheniformis se apresenta como uma fonte promissora de carboxilesterases. No entanto, até o momento, não há informações estruturais sobre carboxilesterases deste organismo. Este estudo teve como objetivo analisar bioquímica e estruturalmente duas carboxilesterases de B. licheniformis, focando em características relevantes para aplicações biotecnológicas. BlEst1 apresentou maior atividade hidrolítica contra p-nitrofenil acetato, em pH 7,0 e a 40 ºC. Além disso, BlEst1 mostrou-se estável em alguns solventes orgânicos e estabilidade em altas concentrações de sal (0 – 3 M NaCl), enquanto mantem a atividade, com aumento significativo de 17 °C na temperatura de melting, revelando sua característica halotolerante. A análise estrutural revelou uma superfície eletrostática acídica, indicando que BlEst1 pode adotar o modelo de estabilização-solvatação, a teoria mais comum para a adaptação halofílica. BlEst2 apresentou um enovelamento típico de α/β-hidrolase e a presença de múltiplos domínios. O domínio catalítico apresentou duas inserções, que ocupam localizações conservadas que comumente constituem o domínio lid em lipases. Os domínios C-terminais compõem o propeptídeo de BlEst2 e sua remoção é necessária para a ativação enzimática. Além disso, eles agem como chaperonas intramoleculares, sendo necessários para o enovelamento adequado. Depois da ativação, o BlEst2 apresentou a maior atividade hidrolítica (292 U/mg) contra o p-nitrofenil butirato a pH 8,0 e 45 ºC. Para ambas as enzimas encontramos incoerências entre a classificação e dados experimentais, indicando que os sistemas de classificação ainda não são representativos o suficiente para explicar a grande diversidade dentro desse grupo de hidrolases. |