Classificação linear de bovinos: criação de um modelo de decisão baseado na conformação de tipo “true type” como auxiliar a tomada de decisão na seleção de bovinos leiteiros

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: Sousa, Rogério Pereira de
Orientador(a): Vaccaro, Guilherme Luís Roehe
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade do Vale do Rio dos Sinos
Programa de Pós-Graduação: Programa de Pós-Graduação em Engenharia de Produção e Sistemas
Departamento: Escola Politécnica
País: Brasil
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: http://www.repositorio.jesuita.org.br/handle/UNISINOS/5896
Resumo: A seleção de bovinos leiteiros, através da utilização do sistema de classificação com características lineares de tipo, reflete no ganho de produção, na vida produtiva do animal, na padronização do rebanho, entre outros. Esta pesquisa operacional obteve suas informações através de pesquisas bibliográficas e análise de base de dados de classificações reais. O presente estudo, objetivou a geração de um modelo de classificação de bovinos leiteiros baseado em “true type”, para auxiliar os avaliadores no processamento e análise dos dados, ajudando na tomada de decisão quanto a seleção da vaca para aptidão leiteira, tornando os dados seguros para futuras consultas. Nesta pesquisa, aplica-se métodos computacionais à classificação de vacas leiteiras mediante a utilização mineração de dados e lógica fuzzy. Para tanto, realizou-se a análise em uma base de dado com 144 registros de animais classificados entre as categorias boa e excelente. A análise ocorreu com a utilização da ferramenta WEKA para extração de regras de associação com o algoritmo apriori, utilizando como métricas objetivas, suporte / confiança, e lift para determinar o grau de dependência da regra. Para criação do modelo de decisão com lógica fuzzy, fez-se uso da ferramenta R utilizando o pacote sets. Por meio dos resultados obtidos na mineração de regras, foi possível identificar regras relevantes ao modelo de classificação com confiança acima de 90%, indicando que as características avaliadas (antecedente) implicam em outras características (consequente), com uma confiança alta. Quanto aos resultados obtidos pelo modelo de decisão fuzzy, observa-se que, o modelo de classificação baseado em avaliações subjetivas fica suscetível a erros de classificação, sugerindo então o uso de resultados obtidos por regras de associação como forma de auxílio objetivo na classificação final da vaca para aptidão leiteira.