Modelo de classificação automática de sinais fisiológicos para identificação de estresse

Detalhes bibliográficos
Ano de defesa: 2021
Autor(a) principal: Rodrigues, Clarissa Almeida
Orientador(a): Rigo, Sandro José
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade do Vale do Rio dos Sinos
Programa de Pós-Graduação: Programa de Pós-Graduação em Computação Aplicada
Departamento: Escola Politécnica
País: Brasil
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: http://www.repositorio.jesuita.org.br/handle/UNISINOS/9807
Resumo: O estresse tem se tornado uma doença relevante na sociedade atual, devido a uma série de fatores ligados ao contexto da vida contemporânea. Esse desequilíbrio impacta tanto a esfera pessoal como profissional dos indivíduos por estar associado ao desenvolvimento de diversas patologias. A evidência do estado de estresse pode ser identificada através de diferentes alterações fisiológicas, podendo ser utilizados sensores vestíveis para a medição desses sinais automaticamente. Abordagens de Aprendizagem de máquina vêm sendo usadas para a identificação automática de padrões de estresse a partir do uso de dados gerados por sensores vestíveis monitorando sinais fisiológicos. Apesar de resultados positivos, essas iniciativas apresentam uma lacuna no uso combinado de diversos sinais fisiológicos e no uso de marcadores biológicos para anotação dos dados. Com o objetivo de explorar possibilidades para descrever um modelo para classificação de estresse com múltiplos sinais fisiológicos, foram desenvolvidos experimentos com diferentes combinações de sinais (EMG, EDA e ECG) usando diferentes algoritmos de aprendizado de máquina, usando três diferentes datasets (BeWell, WESAD e Training2017). Segundo os experimentos realizados no contexto de multisinais, o melhor resultado foi utilizando ECG e EMG quando processado com Gaussian Naïve Bayes, obtendo precisão de 90%.