Uma metodologia para detecção de sonolência em tempo real com EEG vestível com duas derivações
Ano de defesa: | 2020 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal de Santa Maria
Brasil Ciência da Computação UFSM Programa de Pós-Graduação em Ciência da Computação Centro de Tecnologia |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://repositorio.ufsm.br/handle/1/22267 |
Resumo: | Modern life often requires the subject to modify his circadian cycle due to his profession. This change implies low performance, bad mood and, mainly, reduced attention and, drowsiness at unsuitable times. According to the WHO, about 1.35 million people die each year in traffic accidents. Thus, this work proposes a methodology for detecting drowsiness in real time, with the aim of helping to minimize the problem mentioned. The proposed methodology extracts Alpha, Theta, Beta and Gamma through the Haar Wavelet transform and compares performances of the classifiers: MLP, KNN, LDA, RF, SVM and a Threshold. All analyzes performed used signals from a public database. In order to be able to evaluate the methodology in a more realistic environment, part of the signals were separated and through an experiment, they were acquired by a wearable EEG. From there, the acquired signal and the classifier performances for these signals were analyzed. In addition, the performances of the classifiers for all samples (without EEG aquisition) and different epoch sizes were also evaluated, being a 10 s epoch with a sliding window of 3 s the best, where a sensitivity of 95% was obtained with an SVM. |