Detalhes bibliográficos
Ano de defesa: |
2009 |
Autor(a) principal: |
Schmitt, Paula |
Orientador(a): |
Veronez, Mauricio Roberto |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade do Vale do Rio dos Sinos
|
Programa de Pós-Graduação: |
Programa de Pós-Graduação em Geologia
|
Departamento: |
Escola Politécnica
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
http://www.repositorio.jesuita.org.br/handle/UNISINOS/3366
|
Resumo: |
As técnicas de perfilagem geofísica e de testemunhagem, utilizadas na identificação de litologias, representam alto custo financeiro e envolvem uma quantidade considerável de tempo por parte de um especialista. Nesse sentido, este trabalho propõe a modelagem e aplicação de um método alternativo de classificação litológica, através de Redes Neurais Artificiais (RNAs), para auxiliar no processo de interpretação de dados geofísicos. A área de estudo da aplicação é a Jazida do Leão, localizada em sua grande parte nos municípios de Rio Pardo, Minas do Leão e Butiá (RS). O conjunto de treinamento e de validação da RNA contém informações de oito furos de sonda provenientes das Formações Palermo e Rio Bonito. As variáveis de entrada incluem dados de profundidade e informações geofísicas de perfis raios gama, potencial espontâneo, resistência e resistividade. Para todos os experimentos, as litologias a serem classificadas foram: arenito, siltito e carvão. O modelo de rede neural utilizado foi o de múltiplas camadas (MLP) alimentadas adiante (feedforward). As redes foram treinadas com o algoritmo de retropropagação de Levenberg- Marquardt e Resilient Backpropagation. Obteve-se uma taxa de acertos de aproximadamente 80% na classificação. |